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Abstract
The coupled Kadomtsev–Petviashvili (cKP) equation possesses N-soliton
solutions with more parametric freedom than the solitons of the usual KP
equation. Its solutions can therefore be expected to model far more complex
interactions than their KP counterparts. The existence of ‘web’-like structures
(on a finite scale) for cKP solutions (Isojima S, Willox R and Satsuma J 2002
J. Phys. A: Math. Gen. 35 6893–6909) is a manifestation of this greater
freedom. In this paper, we propose a new method to analyse the behaviour
of solitons which we demonstrate in some examples. In addition we discuss
‘essentially three-body collisions’, described by a two-soliton solution of the
cKP equation.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

The coupled Kadomtsev–Petviashvili (cKP) equation(
D4

x − 4DxDt + 3D2
y

)
τ · τ = 24σ̂ σ (1)(

D3
x + 2Dt − 3DxDy

)
σ̂ · τ = 0 (2)(

D3
x + 2Dt + 3DxDy

)
σ · τ = 0 (3)

was first proposed as the soliton system obtained by coupling the KP and the Davey–Stewartson
equation (although in a slightly different scaling of the independent variables) [1]. The above
equations are presented in terms of the Hirota bilinear operators Dx,Dy and Dt , defined as
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∣∣∣∣x ′ = x
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t ′ = t

. (4)
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Equations (1)–(3) can be transformed into the following coupled nonlinear partial
differential equations:

(4ut − 6uux − uxxx)x − 3uyy + 24(vv̂)xx = 0 (5)

2v̂t + 3uv̂x + v̂xxx − 3

(
v̂xy + v̂

∫ x

uy dx

)
= 0 (6)

2vt + 3uvx + vxxx + 3

(
vxy + v

∫ x

uy dx

)
= 0 (7)

by means of the dependent variable transformation

u = 2(log τ)xx (8)

v̂ = σ̂ /τ (9)

v = σ/τ. (10)

Remark that when σ̂ σ = 0 (and consequently v̂v = 0) we obtain the standard KP equation
and its bilinear form from the above equations.

It is well known that the cKP equation has N-soliton solutions which can be expressed
in terms of Pfaffians [2] and that, as such, it is actually part of a hierarchy of integrable
equations [2–4] possessing Pfaffian-type solutions. Recently it turned out that the cKP
equation (5)–(7) (exactly as it stands) exhibits a profound connection with matrix integrals
over the orthogonal and symplectic (Hermitian) ensembles (see e.g. [5, 6]) and its solutions
might therefore find applications in the context of random matrix theory [7]. Although the
cKP equation, in this sense, definitely merits a place among the classic soliton equations,
the detailed behaviour of its soliton solutions was only clarified quite recently [8]. In [8]
we discussed—by means of graphic simulations—the existence of ‘web’-like structures for
certain soliton solutions of the cKP equation. These solutions were named ‘spider-web
solutions’. Here we shall study the behaviour of the spider-web solutions of the cKP equation
in considerable detail, using analytical tools instead of relying on graphical simulation. In
section 2, we list the functional forms of the soliton solutions of the cKP equation. We
shall introduce a new method in section 3 for the analysis of soliton solutions and then apply
this method to some specific examples of spider-web solutions. In section 4, we will study
the asymptotic behaviour of the two-soliton solution of the cKP equation and show that the
two-soliton solution of the cKP equation either behaves as a spider-web solution or describes
what we will call essentially three-body collisions.

2. The soliton solutions of the cKP equation

In the following, let pj and qj (j = 1, 2, . . . , 2N ) be arbitrary parameters characterizing
the behaviour of the solitons. Moreover, let αj , βj (j = 1, 3, . . . , 2N − 1) be (arbitrary)
phase constants governing the relative positions of the solitons. We can then define the phase
functions ξp and θpj pk

ξp := px + p2y + p3t (11)

θpj pk
:= ξpj

+ ξpk
(12)

and the interaction factors A(pj , pj+1; qk, qk+1) (j, k = 1, 3, . . . , 2N − 1)

A(pj , pj+1; qk, qk+1) := (pj − pj+1)(qk − qk+1)

(pj − qk)(pj − qk+1)(pj+1 − qk)(pj+1 − qk+1)
. (13)
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For example, the one-soliton solution of the cKP equation can be represented by the
following three functions:

τ = 1 + α1β1A(p1, p2; q1, q2) exp
(
θp1p2 − θq1q2

)
(14)

σ̂ = α1(p1 − p2) exp
(
θp1p2

)
(15)

σ = β1(q1 − q2) exp
(−θq1q2

)
. (16)

From (14)–(16), one can obtain the functional form of u, v, v̂ corresponding to the one-
soliton solution of the cKP equation:

u = 2(p1 + p2 − q1 − q2)
2 exp

(
θp1p2 − θq1q2 + δ

)
(
1 + exp

(
θp1p2 − θq1q2 + δ

))2

= (p1 + p2 − q1 − q2)
2

2
sech2

[
1

2

(
θp1p2 − θq1q2 + δ

)]
(17)

v̂ = α1(p1 − p2) exp(θ1)

1 + exp(θ1 − θ2 + δ)
= α1(p1 − p2)

1

exp(−θ1) + exp(−θ2 + δ)
(18)

v = β1(q1 − q2) exp(−θ2)

1 + exp(θ1 − θ2 + δ)
= β1(q1 − q2)

1

exp(θ2) + exp(θ1 + δ)
(19)

where δ := log α1β1A(p1, p2; q1, q2). Note that the functional form of u is that of a typical
(bell-shaped) KP sech2-soliton. On the other hand, v and v̂ will always diverge (rapidly) in
some direction. Their product vv̂, however, has the same functional form as the variable u, up
to a constant multiple:

vv̂ = α1β1(p1 − p2)(q1 − q2) exp
(
θp1p2 − θq1q2

)
(
1 + exp

(
θp1p2 − θq1q2 + δ

))2

= (p1 − q1)(p1 − q2)(p2 − q1)(p2 − q2)

4
sech2

[
1

2

(
θp1p2 − θq1q2 + δ

)]
. (20)

Typical behaviour of the dependent variables u, v, v̂ and vv̂ is shown in figure 1. In the
case of the N-soliton solution, it will still be true that we find similar rational expressions of
exponential functions for u and vv̂, but for the coefficients (of the exponential functions) in
their numerators (in the case of the one-soliton solution this obviously results in vv̂ being equal
to u up to a constant multiple). What this really means of course is that both u and vv̂ describe
similar interactions of solitons, except for their amplitudes or relative phases. However, for
computational reasons we shall limit our discussions to the properties of the u-field as it only
depends on a single function τ , instead of three different functions for vv̂.

The functional forms of τ, σ, σ̂ , corresponding to the two-soliton solution of the cKP
equation, are

τ = 1 + α1β1A(p1, p2; q1, q2) exp
(
θp1p2 − θq1q2

)
+ α3β3A(p3, p4; q3, q4) exp

(
θp3p4 − θq3q4

)
+ α1β3A(p1, p2; q3, q4) exp

(
θp1p2 − θq3q4

)
+ α3β1A(p3, p4; q1, q2) exp

(
θp3p4 − θq1q2

)
+ α1β1α3β3

∏
1�i<j�4{(pi − pj )(qi − qj )}∏4

i,j=1(pi − qj )
exp

(
θp1p2 + θp3p4 − θq1q2 − θq3q4

)
(21)
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Figure 1. An example of the one-soliton solution of the cKP equation (given as a 3D plot and a
contour plot).

σ̂ = α1(p1 − p2) exp
(
θp1p2

)
+ α3(p3 − p4) exp

(
θp3p4

)
+ α1α3β1

(q1 − q2)
∏

1�i<j�4(pi − pj )∏
1�i�4,j=1,2(pi − qj )

exp
(
θp1p2 + θp3p4 − θq1q2

)

+ α1α3β3

(q3 − q4)
∏

1�i<j�4(pi − pj )∏
1�i�4,j=3,4(pi − qj )

exp
(
θp1p2 + θp3p4 − θq3q4

)
(22)

σ = β1(q1 − q2) exp
(−θq1q2

)
+ β3(q3 − q4) exp

(−θq3q4

)
+ α1β1β3

(p1 − p2)
∏

1�i<j�4(qi − qj )∏
i=1,2,1�j�4(pi − qj )

exp
(
θp1p2 − θq1q2 − θq3q4

)

+ α3β1β3

(p3 − p4)
∏

1�i<j�4(qi − qj )∏
i=3,4,1�j�4(pi − qj )

exp
(
θp3p4 − θq1q2 − θq3q4

)
. (23)
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For later convenience, we shall define the following simple notation ζjk for the phase
functions in the two-soliton τ :

ζjk := θpj pj+1 − θqkqk+1 + log{αjβkA(pj , pj+1; qk, qk+1)}. (24)

Furthermore, we denote the last term in τ of the two-soliton solution as eζ1133 . In this notation,
the functional form of the dependent variable τ of the two-soliton solution takes the simple
form

τ = 1 + eζ11 + eζ33 + eζ13 + eζ31 + eζ1133 . (25)

It should be pointed out that multiplication of τ, σ, σ̂ by a factor exp ϕ, for an arbitrary
linear function ϕ(x, y, t), is one of the (fundamental) gauge transformations for the bilinear
equations (1)–(3). Hence, we can view all functions obtainable through such a transformation
as gauge equivalent. Moreover, due to the particular expressions (8)–(10), u, v and v̂ are
invariant under such transformations and, in what follows, we shall therefore treat different
gauges of the function τ as one and the same. Making use of this gauge equivalence we see
that, for example in the case of the two-soliton solution, there is a maximum of 15 different
phases that can possibly appear in τ (or in one of its gauge equivalent expressions):{

ζ11

ζ1133 − ζ33

{
ζ33

ζ1133 − ζ11

{
ζ13

ζ1133 − ζ31{
ζ31

ζ1133 − ζ13

{
ζ11 − ζ13

ζ31 − ζ33

{
ζ11 − ζ31

ζ13 − ζ33

ζ11 − ζ33 ζ13 − ζ31 ζ1133

(26)

(phases grouped together in a bracket only differ by a constant). Obviously, all of these can
be written as a difference ζ1 − ζ2 of two of the six fundamental phases that appear in (25):
ζ1133, ζ31, ζ13, ζ33, ζ11 or 0 (i.e. the ‘phase’ of the constant term).

3. A new method for analysing the behaviour of solitons

3.1. Description of the method

In our previous paper [8], we presented ‘spider-web solutions’ to the cKP equation. The
interesting thing about these solutions is that, e.g., in the case of the two-soliton, the interaction
waves form a tetragon on a finite domain, with an area that changes over time (see figure 2).
Moreover, more complex patterns of polygons will appear as the number of solitons increases
(see figure 3). Unfortunately however, up to this day almost no methods for the analysis of
a multi-soliton solution on a finite domain are known (with the possible exception of [9]):
the asymptotic analysis ordinarily used to investigate the behaviour of solitons being only
applicable on an infinite domain. The method we shall present here, however, enables us to
clarify the behaviour of solitons in the entire xy-plane (or any, possibly finite, sub-domain
thereof) at arbitrary fixed times. In general it will be shown that all waves that appear in
a typical soliton interaction pattern can be approximated by one-solitons, regardless of the
nature of the interactions (in contrast to such analysis as found in [10]).

Let us consider the case of the two-soliton solution as an example. For simplicity, we
represent the phase functions at fixed t as

ζjk = Pjkx + Qjky + δjk (27)

Pjk := pj + pj+1 − qk − qk+1 (28)

Qjk := pj
2 + pj+1

2 − qk
2 − qk+1

2 (j, k = 1, 3) (29)
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Figure 2. An example of the spider-web solution (the two-soliton solution as a density plot).

ζ1133 = P1133x + Q1133y + δ1133 (30)

P1133 := P11 + P33 = P13 + P31 (31)

Q1133 := Q11 + Q33 = Q13 + Q31. (32)

Note that the δjk and δ1133 are constants that depend on some previously chosen values of the
parameters and some fixed t.
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Figure 3. An example of a spider-web solution obtained from a three-soliton, given as a density
plot.

The method we propose for the analysis of such (and more general) solutions boils down
to a fine-tuning of the usual asymptotic analysis one carries out to study soliton solutions. It
can be summarized as follows:

Step 0. Fix the independent variable t (arbitrarily).

Step 1. Choose one phase (denoted as ζ ) from all possible phases that can appear in the
solution and assume that this particular phase is small (almost zero). For example, we choose
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ζ ≡ ζ11 among the phases of (26) and we consider a region in the xy-plane near the line
ζ11 = 0. For convenience, we shall define η11 := ζ11/P11 (note that the coefficient of x in η11

is 1).

Step 2. Express the x-dependence of all other phases in terms of the phase chosen in step 1
and calculate the ‘remainders’. More precisely, starting with the phase ζ33, express it as

ζ33 = P33η11 + (Q33 − P33Q11/P11)y + (δ33 − P33δ11/P11).

We call the contribution (Q33−P33Q11/P11)y + (δ33−P33δ11/P11) in this phase the ‘remainder’
r33(y). Similarly, re-express all other phases in terms of η11 and calculate the remainders
r13(y), r31(y) and r1133(y). Note that the remainders are, at most, linear expressions of y.

Step 3. Calculate the interval of values for the independent variable y in which all remainders
are negative. Concretely, solve the simultaneous inequalities


r33(y) < 0
r13(y) < 0
r31(y) < 0
r1133(y) < 0.

The above interval corresponds to a particular subset of the line ζ11 = 0 (obviously, this subset
can only be of three types: a half-line, a line-segment or the empty set) on which this phase
dominates all other phases (which are all negative). In fact, as will be explained in detail in
section 3.2, this subset of the line ζ11 acts as a separator between the two domains of the xy-
plane where either the phase ‘0’ or the phase ζ11 dominates all other phases ζ11, ζ13, ζ33, ζ1133

that appear in (25). We thus have the following:

Claim. The subset of ζ = ζ1 − ζ2 = 0, ζ1, ζ2 ∈ {0, ζ11, ζ13, ζ31, ζ33, ζ1133} calculated
above, acts as a boundary between the domains of the xy-plane where the two phases ζ1, ζ2

(respectively) dominate all other phases.
Furthermore, in a (small) region of the xy-plane around this subset of ζ = 0, the two-

soliton solution can be approximated by a one-soliton solution with phase ζ .

If, for example, we obtained the half-line ζ11 = 0|y>a in step 3, the two-soliton solution
on ζ11 = 0|y>a is approximated by a one-soliton solution having the phase ζ11. If, however, a
line-segment ζ11 = 0|a<y<b was obtained, we have a similar result on ζ11 = 0|a<y<b. In the
case only the empty set was obtained, no soliton with phase ζ11 will exist at that time.

Step 4. Repeat the above procedure for the remaining phases. In this way one can obtain
a set of lines or line segments that will act as boundaries between different domains in the
xy-plane where a certain phase among {0, ζ11, ζ13, ζ31, ζ33, ζ1133} dominates the others. On
these boundaries the original two-soliton solution is approximated by a one-soliton solution.

It goes without saying that the above analysis can be readily extended to general N-soliton
solutions.

3.2. Examples and the relation between the phase functions and solitons

We give some examples of our method, showing the relation between the phases and the
solitons.

As a first example we choose the parameter values

(p1, p2, p3, p4, q1, q2, q3, q4) = (
2, 3

2 , 1, 1
2 ,− 1

3 ,− 1
2 ,−1,− 4

3

)
(α1, α3, β1, β3) = (1, 1, 1, 1)

(33)
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Figure 4. An example of the two-soliton solution with parameters (33) at time t = −60 (as a
density plot).

and t = −60,−0.7, 60. Going through the above scheme at time t = −60, we obtain the
following result:

ζ11: y > 129.49
ζ33: y < −47.62
ζ31: −47.62 < y < 129.49

ζ1133 − ζ11: y > 81.29
ζ1133 − ζ33: y < 11.20
ζ1133 − ζ31: 11.20 < y < 81.29

ζ11 − ζ31: 81.29 < y < 129.49
ζ31 − ζ33: −47.62 < y < 11.20.

The edges of these intervals can be thought of as ‘branch points’ in the approximation, i.e.
points where transitions between different one-soliton waves occur. We list the coordinates of
these branch points:

(x, y) = (−14.95, 129.49), (52.52,−47.62), (105.55, 81.29), (147.27, 11.20).

It is clear from figure 4 that our analysis correctly predicts the shape of the tetragon one
observes: it yields (accurate) phase functions for the one-solitons by which the interaction
waves are approximated, as well as the correct locations of the branch points in the tetragon.
In other words, we are able to correctly predict what pattern the soliton solution will form in
the xy-plane.

The exact relationship between the phase functions appearing in the exponential functions
that make up a particular τ and the solitons that are described by it can be understood as
follows. Taking the two-soliton τ as an example, one can say that log τ is roughly given
by the (positive) maximum of the phases, i.e. by max(0, ζ11, ζ33, ζ13, ζ31, ζ1133). It is clear,
however, that this picture should break down near the boundaries of the domains where each
phase dominates. This will be where the actual waves are located. For example, the surface
log τ plotted in figure 5 is well approximated by the combination of the planes obtained from
the maximization max(0, ζ11, ζ33, ζ13, ζ31, ζ1133). The solitons and their interactions appear
on the aforementioned boundaries, where the surface bends (remember that u is the second
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Figure 5. Breakdown of the xy-plane into domains where the respective phase functions dominate;
the choice of the parameters and time is that of figure 4.

order derivative of log τ , i.e. related to the curvature of the surface log τ ). The phase ζ of
each soliton is given by the difference of the phase functions ζ1 and ζ2 in the domains that
have the line ζ = 0 as their common boundary. In the second graph of figure 5 we plotted
the domains where each phase dominates and the boundaries ζ = ζ1 − ζ2 that arise between
them. Hence, in order to predict the pattern a particular multi-soliton solution will form in the
xy-plane, it is sufficient to locate the boundaries of the domains in the xy-plane where each
phase function becomes dominant. This is exactly what the method described in the previous
subsection accomplishes. In the case of a two-soliton solution, the xy-plane is divided, at
most, into six parts as a two-soliton solution has exactly six phase functions (counting ‘0’ as a
phase). However, only five such domains appear in figure 5, leaving one to wonder what has
happened to the remaining phase. To answer this question one has to look at what happens to
the tetragon at different times.

Applying the same analysis as before at time −0.7, it turns out that the number of line
segments found is much greater than before:

ζ11: 1.5070 < y

ζ33: y < −0.3644
ζ31: −0.3644 < y < 1.5070

ζ1133 − ζ11: 1.4634 < y

ζ13 − ζ33: −0.1449 < y < 0.4976
ζ31 − ζ33: −0.3644 < y < 0.4976

ζ1133 − ζ33: y < −0.1449
ζ11 − ζ13: 0.7371 < y < 1.4634

ζ1133 − ζ13: −0.1449 < y < 1.4634
ζ11 − ζ31: 0.7371 < y < 1.5070
ζ13 − ζ31: 0.4976 < y < 0.7371.

The corresponding branch points are

(x, y) = (1.096, 1.5070), (1.809,−0.3644), (4.191, 1.4634),

(4.804,−0.1449), (3.198, 0.4976), (3.021, 0.7371).

In figure 6 we now clearly see that a sixth domain has appeared in the interaction region, a
result that is clearly borne out by our analysis but which is much harder to spot visually.
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Figure 6. Two-soliton for the parameters of figure 4 (plotted at t = −0.7 as a 3D plot and a
contour plot) and the breakdown of the xy-plane into dominant phase domains.

As time evolves further, for example at time t = 60, we revert to a situation where only
five different domains appear in the xy-plane. More precisely, we find the branch points

(x, y) = (−144.52,−10.26), (−101.87,−81.91), (−47.72, 49.83), (21.23,−131.15).

and a set of dominant domains as in figure 7. Note that in this case the phase ζ13 has appeared
at the expense of the phase ζ31. Hence, it is clear that the number of phases that appear (or the
identity of the phases that appear) may vary over time.

As a second example we take

(p1, p2, p3, p4, q1, q2, q3, q4) = (
1, 1

20 , 1
30 , 1

40 ,− 1
50 ,− 1

43 ,− 1
30 ,− 1

2

)
(α1, α3, β1, β3) = (1, 1, 1, 1)

(34)

taken at t = 100 (see figure 8). We find the following branch points:

(x, y) = (−52.05,−42.49), (−46.31,−54.60), (45.60, 148.82), (47.93,−147.98)

the dominant phases are given in figure 8. Our analysis shows that this solution also has a
web-like structure. At first sight however, one might get the impression from figure 8 that this
solution describes a usual two-soliton interaction. This is due to the very small amplitude of
the soliton with phase ζ1133−ζ13 and to the almost negligible differences between the directions
of the solitons corresponding to the phases ζ11 −ζ13 and ζ1133 −ζ11, or ζ13 −ζ33 and ζ1133 −ζ33.
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Figure 7. A density plot of the same two-soliton solution as in figure 4, at t = 60, together with
the distribution of dominant phases in the xy-plane.
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Figure 8. Another example of the two-soliton solution: 3D plot and density plot.

This example shows that visual inspection, due to its inherent resolution-dependence, does not
always allow one to appreciate the intricacies of the interaction properties of solitons.

Closing this section we would like to point out that nothing in the present method is
specific to the analysis of spider-web solutions. As it stands, the method can be applied with
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Figure 9. An example of the two-soliton solution of the KP equation: 3D plot and density plot.

equal ease to other sech2 soliton-type interactions as well. Let us, for example, take the case
of the KP equation

(−4ut + 6uux + uxxx)x + 3uyy = 0 (35)

for which we analyse its two-soliton solution

τ = 1 + exp
(
ξp1 − ξq1 + d1

)
+ exp

(
ξp2 − ξq2 + d2

)
+ exp

(
θp1p2 − θq1q2 + d1 + d2 + d̃

)
=: 1 + eζ̂1 + eζ̂2 + eζ̂12 (36)

ed̃ := (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)
(37)

where u = 2(log τ)xx . As an example, we choose the parameters as

(p1, p2, q1, q2) = (
1.0001, 1, 3

2 , 1
4

)
(d1, d2) = (0, 0)

and fix time at t = 0. Our analysis yields

ζ̂1: y > 0
ζ̂2: y > 0

ζ̂12 − ζ̂2: y < −21.35
ζ̂12 − ζ̂1: y < −21.35
ζ̂1 − ζ̂2: −21.35 < y < 0

and the two branch points:

(x, y) = (0, 0), (37.36,−21.35)

which fits well with the snapshot presented in figure 9.
We also see from this example that, as there are only six phases in the two-soliton solution

of the KP equation (the above five plus ζ̂ ) and as at least eight phases would be needed to
realize a spider-web solution, such solutions can never be realized by means of KP two-soliton
solutions. We would dare to conjecture that spider-web solutions, such as those put into
evidence in figure 3, should actually be regarded as a particular feature of coupled systems and
cannot be obtained from standard equations such as the KP equation (see also the discussion in
section 4.2).



9546 S Isojima et al

4. The asymptotic behaviour of the cKP two-soliton solution

In this section, we shall discuss the asymptotic behaviour of the cKP two-soliton solutions
on the xy-plane at arbitrary times (fixed), assuming that no resonances occur (i.e. that δij and
δ1133 are finite). We also assume that all remainders (as defined in section 3.1) depend on the
variable y.

4.1. Asymptotics

We start by proving the following proposition regarding the asymptotic behaviour of the cKP
two-soliton.

Proposition 1. If a soliton with a phase ζ exists in the asymptotic limit y → +∞ (or y → −∞)
(i.e. localized on the line ζ = 0) at an arbitrary (but fixed) time, a similar soliton (i.e. with the
same phase but shifted by a constant) will exist in the asymptotic limit → −∞ (or y → +∞)
at that same instant.

Proof. Without loss of generality, we can assume that the soliton having the phase ζ11 exists
in the asymptotic limit y → −∞ on the line ζ11 = 0. This assumption is equivalent to the
inequalities

Q33 − P33Q11/P11 > 0 (38)

Q13 − P13Q11/P11 > 0 (39)

Q31 − P31Q11/P11 > 0. (40)

From the table of (26) it is clear that we have to show a soliton with ζ1133 − ζ33 exists in the
asymptotic limit y → +∞, localized on the line ζ1133 − ζ33 = 0. This is equivalent to showing
that the following inequalities hold:

−Q33 − (−P33)Q11/P11 < 0 (41)

Q11 − Q33 − (P11 − P33)Q11/P11 < 0 (42)

Q13 − Q33 − (P13 − P33)Q11/P11 < 0 (43)

Q31 − Q33 − (P31 − P33)Q11/P11 < 0. (44)

(Please bear in mind that in this analysis the functions τ and τ̂ = τ/eζ33 are gauge equivalent
and hence, correspond to the same solution of the cKP equation.) Clearly, (41) is trivial
because of (38). Secondly, (42) is also trivial because it is actually the same expression as
(41). Finally, the left-hand side of (43) can be changed to −(Q31−P31Q11/P11) by eliminating
P33 and Q33 by (31) and (32). This expression is found to be negative because of (40). The
remaining inequality (44) is proven in a similar way. �

Next, we study and classify the possible asymptotic behaviour of the two-soliton solution.
We again assume that a soliton with a phase ζ11 exists in the asymptotic limit y → −∞
on the line ζ11 = 0, i.e. (38)–(40) are satisfied. We shall be interested in knowing which
other phases are asymptotically compatible with this assumption. Since ζ11 + ζ33 = ζ13 + ζ31,
up to a constant, we can consider either ζ13 or ζ31 as phases which can be determined at will,
making ζ33 special. In the following we shall therefore study the (asymptotic) occurrence of
ζ33 and ζ13.
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First, let us consider the case of ζ33. For a soliton having the phase ζ33 to exist
asymptotically it is required that the expressions

Q11 − P11Q33/P33 (45)

Q13 − P13Q33/P33 (46)

Q31 − P31Q33/P33 (47)

all have the same sign. In order to deal with these inequalities, it turns out that we have to make
certain assumptions about the respective signs of the parameters, namely: (i) P11 > 0, P33 > 0;
(ii) P11 > 0, P33 < 0; (iii) P11 < 0, P33 > 0; (iv) P11 < 0, P33 < 0.

Case (i): The fact that (45) is negative follows from (38): Q11/P11 < Q33/P33. Hence, (46)
and (47) must be negative. Then, if P13 < 0, we obtain Q13−P13Q33/P33 > Q13−P13Q11/P11

but this leads to a contradiction: (46) is positive because of (39). Therefore P13 has to be
positive. Similarly, we find P31 must be positive.

Case (ii): We find that (45) is positive from (38). Thus (46) and (47) must be positive as well.
Unlike case (i) we cannot find trivial inconsistencies, even if we make some more assumptions
about the signs of parameters.

Case (iii): This case is similar to case (ii) and the details are omitted.

Case (iv): We also omit the detailed description of this case, as it is very similar to case (i).

We arrange these results in the following proposition.

Proposition 2. Provided that the soliton with the phase ζ11 exists in the asymptotic limit
y → −∞ (on the line ζ11 = 0), the soliton with the phase ζ33 will exist:

(i) in the asymptotic limit y → +∞ (on the line ζ33 = 0) if and only if the parameters satisfy
(38)–(40) and

Pij > 0 (i, j = 1, 3) (48)

Q13 − P13Q33/P33 < 0 (49)

Q31 − P31Q33/P33 < 0 (50)

or

Pij < 0 (i, j = 1, 3) (51)

Q13 − P13Q33/P33 < 0 (52)

Q31 − P31Q33/P33 < 0. (53)

(ii) in the asymptotic limit y → −∞ (on the line ζ33 = 0) if and only if the parameters satisfy
(38)–(40) and

P11 > 0, P33 < 0 (54)

Q13 − P13Q33/P33 > 0 (55)

Q31 − P31Q33/P33 > 0 (56)

or

P11 < 0, P33 > 0 (57)

Q13 − P13Q33/P33 > 0 (58)

Q31 − P31Q33/P33 > 0. (59)
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Note that we do not know how to choose parameters {pj , qj } (j = 1, 2, 3, 4) so as to realize
the above conditions in any systematic way.

Next, let us consider the appearance of the phase ζ13. In this case we should study the
sign of the expressions

Q11 − P11Q13/P13 (60)

Q33 − P33Q13/P13 (61)

Q31 − P31Q13/P13. (62)

Though we omit the detailed analysis (which is similar to the preceding one), we obtain the
following proposition.

Proposition 3. Provided that the soliton with the phase ζ11 exists in the asymptotic limit
y → −∞ (on the line ζ11 = 0), the soliton with the phase ζ13 exists:

(i) in the asymptotic limit y → +∞ (on the line ζ13 = 0) if and only if the parameters satisfy
(38)–(40) and the conditions obtained from (48)–(50) or (51)–(53) by interchanging
subscripts 13 and 33.

(ii) in the asymptotic limit y → −∞ (on the line ζ13 = 0) if and only if the parameters satisfy
(38)–(40) and the conditions obtained from (54)–(56) or (57)–(59) by interchanging
subscripts 13 and 33.

4.2. Discussion

In this section it will be shown that spider-web solutions appear in the case covered by
proposition 2 and that in the case of proposition 3 the two-soliton solution describes what we
shall call an essentially three-body collision.

Let us assume the conditions in proposition 2(i) are satisfied. Saying a soliton exists on
the line ζ11 = 0 in the limit y → −∞ is equivalent to saying that in this limit the planes ζ11

and 0 must have a common boundary (as was demonstrated in section 3.2). Similarly, the
planes ζ33 and 0 must be adjacent as y → +∞. Moreover, bearing in mind the identifications
(26), from proposition 1 we find that the planes ζ33 and ζ1133 are adjacent when y → +∞ and
that ζ11 and ζ1133 are adjacent when y → −∞. Arranging these four (half-)planes, namely,
0, ζ11, ζ33 and ζ1133, on the xy-plane, it is clear that they fill the entire plane except for a finite
domain. It should be clear that only the remaining two phases ζ13 and ζ31 can appear inside
this finite domain. In fact, the expression max(0, ζ11, ζ33, ζ13, ζ31, ζ1133) allows us to establish
which phases actually arise in this domain. For example, in the first example of section 3.2,
ζ31 (figure 5) appears on the finite domain at negative time and ζ13 at positive time (figure 7).
They appear at the same time around t = 0 (figure 6). It is exactly the appearance of these
phases on this (non-asymptotic) domain that is responsible for the creation of a ‘web’-like
pattern. Possibly one also has to allow for cases where the ‘non-asymptotic phases’ never
appear or where only one such phase appears all the time.

Next, let us assume the conditions in proposition 3(i) are satisfied. We then have that the
planes ζ11 and 0 are adjacent for y → −∞ and ζ13 and 0 for y → +∞. Moreover, from
table (26) and proposition 1 we know that the planes ζ33 and ζ1133 must be adjacent when
y → +∞ and that ζ31 and ζ1133 are so when y → −∞. Unlike the discussion in the previous
paragraph, we thus find that all six phases (including ‘0’) do appear in the asymptotic limits.
In other words, these six phases fill the entire xy-plane and thus no ‘web’-like structure is
formed. Moreover, one must conclude that, under the above conditions, three solitons exist
in each asymptotic limit y → ±∞, as can be seen in figure 10. We can therefore make
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Figure 10. An example of an essentially three-body collision for parameters: (p1, p2, p3, p4) =
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the interesting observation that the two-soliton solution of the cKP equation is rich enough
to describe ‘three-soliton interactions’, for a certain range of parameters (one could argue
that the solution should therefore actually be called a ‘three-soliton solution’; however, as
algebraically speaking the present solution is the simplest one that describes the interaction of
two cKP one-soliton solutions, we think it natural to keep on calling it a two-soliton solution).

More importantly, compared to the usual three-soliton solutions, such as those of the
KP equation, the present solutions enjoy a remarkable property that hitherto has never been
observed for three-soliton solutions. It is a well-known fact that standard N-soliton solutions
(such as those for the KP equation) exhibit a remarkable ‘two-ness’. For example, even
though temporarily (i.e. for a narrow window in time) the spatial (xy-) pattern of a three-
soliton interaction for KP solitons might look as if only ‘new’ intermediate waves appear—
unrelated to the ingoing and outgoing solitons—over time ‘shifted’ (in space) versions of
the original solitons will always appear as well. Therefore, for most of the time, the spatial
pattern one observes is nothing but a sequence of successive two-soliton interactions, for
exactly three solitons. At each ‘branch’ in the pattern the solitons will pick up phase shifts
due to a two-soliton interaction and hence one can conclude that the total phase shift each
soliton undergoes is exactly the combination of the phase shifts provoked by the two-soliton
interactions it underwent. However, in the present case, it is clear from our analysis that
every phase associated with a soliton that extends to infinity in the xy-plane appears exactly
twice (as can be seen from figure 10), the intermediate solitons thus always corresponding
to different phases. The three solitons therefore always undergo a complicated interaction
(and this at all times as no solitons disappear) in which three intermediate waves are created,
all of them distinct from the solitons that survive asymptotically. Hence, each soliton really
undergoes only a single phase shift, in a single interaction. Furthermore, as there are no
two-soliton interactions happening (not distinguishable as such in any case) the total phase
shift incurred by each soliton cannot (obviously) be broken down into a sum of elementary
ones. We therefore call this collision of three solitons an essentially three-body collision.

According to the discussion above, the two-soliton solution of the cKP equation exhibits
two different types of patterns, depending on the choice of parameters. It can be seen that
patterns can move from one such type to the other. This is because there exist choices of
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Figure 11. The two-soliton solution for the parameter values (65), contour plot and dominant
phases.

the parameters that satisfy both sets of conditions. Namely, the following condition on the
parameters {

Pij > 0
Q11/P11 < Q31/P31 < Q33/P33 = Q13/P13

(63)

acts as an intermediate constraint between the conditions in propositions 2(i) and 3(i). Let us
choose some parameters which realize (63) for a set of given values of Pjk,Qjk . For example,
satisfying (63) with Pjk,Qjk as

P11 = 1
2 P33 = 2 P13 = 3

2 P31 = 1

Q11 = −1 Q33 = 6 Q13 = 9
2 Q31 = 1

2

(64)

one can obtain parameter values for pj , qj (j = 1, 2, 3, 4) by solving (28), (29) with (64). It
turns out that two of the eight parameters are arbitrary (this arbitrariness can actually be used
to avoid divergences in the field u). This is shown in the example:{

(p1, p2, p3, p4) = (
5
2 , 3

4 , 15+
√

41
8 , 15−√

41
8

)
(q1, q2, q3, q4) = (

11+
√

129
8 , 11−√

129
8 , 1

4 , 3
2

)
.

(65)

We analyse the behaviour of the two-soliton solution that arises from the above parameter
values (together with (α1, α3, β1, β3) = (1, 1, 1, 1)) at t = 0, resulting in the branch points:

(x, y) = (−2.1495, 0.3307), (−2.2539, 0.5396), (−0.5061, 0.3414), (−0.4953, 0.3198)

and a distribution of dominant phases as in figure 11. Two of the three resulting solitons turn
out to be parallel in the xy-plane and are nearly indistinguishable on a graphical plot (see the
left-hand plot in figure 11).

At t = −60 however, the result of our analysis is as follows:

ζ11: y < 240.435
ζ13: y > 240.435

ζ1133 − ζ11: y < 238.658
ζ13 − ζ33: y > 243.341

ζ1133 − ζ33: y > 243.341
ζ11 − ζ13: 238.658 < y < 240.435

ζ1133 − ζ13: 238.658 < y < 243.341
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Figure 12. The two-soliton solution for the parameter values (66): 3D plot, density plot and phase
diagram.

whereas at t = 60 we find:
ζ11: y < −242.669
ζ33: y > −237.845
ζ31: −242.669 < y < −237.845

ζ31 − ζ33: −239.669 < y < −237.845
ζ1133 − ζ33: y > −239.669

ζ11 − ζ31: y < −242.669
ζ1133 − ζ31: y < −239.669

We thus see that the phase function ζ31 does not appear at t = −60 but does at t = 60 and
vice versa for ζ13. Although in an intermediate time range we clearly have a three-body type
solution—two solitons in which are parallel—allowing for ‘infinite boxes’ one could argue
that this solution is also of spider-web type. Hence our belief that the interactions that make
up spider-web solutions are not of the usual ‘two-soliton’ type, but are essentially multi-body
type interactions. This would explain why such structures have never been observed in soliton
systems like the KP equation.

Finally, note that changing the parameters in the above solution slightly, for example, as{
(p1, p2, p3, p4) = (

5
2 , 3

4 , 15+
√

41
8 , 15−√

41
8

)
(q1, q2, q3, q4) = (

11+
√

129
8 , 11−√

129
8 , 1

4 , 3
2 + 0.8

) (66)

the solution becomes purely web-like; the analysis at t = 10 (see also figure 12) yielding the
branch points

(x, y) = (28.938,−41.938), (1.2887,−28.682), (35.747,−42.492), (34.353, −39.703).

and a phase diagram as in figure 12.
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5. Summary

In this paper we introduced a novel method for analysing soliton interactions on finite domains.
The method basically amounts to an approximation of the solitons and their interaction waves
in terms of individual one-solitons and yields accurate estimates for the spatial extent of each
wave. As an analytic method, it also allowed us to predict in which regions of space individual
solitons existed even in the cases where numerical or graphical inspections failed to provide
such information.

The method was applied to the so-called spider-web solutions for the cKP equation,
allowing us to identify the exact phases involved in the interactions that make up the threads
of a web. It also allowed us to discover the existence of what we called essentially three-body
interactions for the cKP solitons, i.e. multi-soliton interactions that cannot be broken down
into sequences of two-soliton interactions. It should be stressed that both types of solutions
are quite different from what is found in the literature on standard KP-like soliton interactions,
where N-solitons (see e.g. [10–12] for relevant details on KP-type soliton interactions) might
give rise to complicated interaction patterns that—their complexity notwithstanding—are
always the result of a succession of (possibly resonant) two-soliton interactions. It should
be noted, however, that structures very much similar to the web-type solutions we discuss
have been shown to exist in interactions of dissipatons for a particular NLS equation [13].
As these are solutions for a (1 + 1)-dimensional system, the web-like structures appear in the
space–time domain. However, the existence of such solutions is not very surprising, as both
the NLS equation and the present cKP system find their origins in the two-component KP
hierarchy. This suggests that web-like structures might be a common feature for the equations
in that hierarchy or their dimensional reductions. It therefore seems worthwhile to apply the
analytic method we proposed here for other types of solitons than the KP-type solitons (i.e.
non-sech2), especially in the setting of the two-component KP hierarchy and many physically
interesting equations in it.
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